
	CPGE PTSI/PT - Sciences Industrielles de l'Ingénieur	PT
CPGE	LIAISON PIVOT	TD
PTSI-PT Lycée Jean Zay - Thiers	Compétences visées: A2-01, C2-07, F3-02	v1.3

Lycée Jean Zay - 21 rue Jean Zay - 63300 Thiers - Académie de Clermont-Ferrand

TD de transfert DIMENSIONNEMENT DE ROULEMENTS

1 Vérification de la durée de vie des roulements à contact radial

On souhaite vérifier la durée de vie $(3000\,h)$ des roulements d'une roue arrière de voiture de compétition. La roue arrière considérée est soumise à un effort axial de $2000\,N$ et à un effort radial de $2400\,N$. On a une fréquence de rotation de $1300\,tr/min$.

On donne, pour un roulement à contact radial :

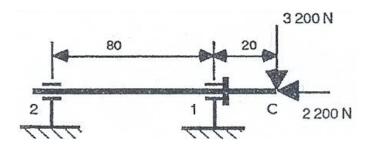
- X = 0.55;
- Y = 1, 4;
- e = 0, 32.

La référence constructeur des roulements est :

- 6406 Roulement de gauche;
- 6205 Roulement de droite.

Question 1 Déterminer les charges radiales F_r et axiales F_a auxquelles sont soumis chacun des roulements. Représenter les actions extérieures à l'arbre sur un schéma simplifié.

Question 2 Déterminer la durée de vie L_{10} de chacun des roulements et vérifier la cohérence avec la durée attendue.



CKE						
SKF.		6205			6406	
Dimensions	C	14.8	kN	С	43.6	kN
r ₂	C ₀	7.8	kN	C ₀	23.6	kN
r ₁	P_{u}	0.335	kN	P_{u}	1	kN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28000	r/min		18000	r/min
		18000	r/min		11000	r/min
	k _r	0.025		k _r	0.035	
	f _O	14		f ₀	12.1	

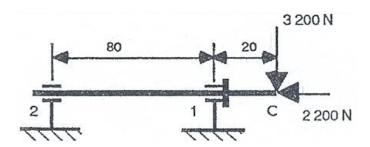
2 Vérification de la durée de vie des roulements à contact radial

Un arbre de transmission est guidé par rapport au carter par deux roulements à une rangée de billes à contact radial. La liaison est représentée par le schéma cinématique simplifié suivant :

Les caractéristiques sont les suivantes :

- arbre de diamètre 28 mm mini;
- fréquence de rotation $N = 100 \,\mathrm{tr/min}$;
- charges constantes;
- on donne, pour le roulement à une rangée de billes à contact radial envisagé de dimensions 30-55-13 les valeurs $C=12\,600\,\mathrm{N}$ et $C_0=8200\,\mathrm{N}$ (on rappelle : $X=0,55,\,Y=1,4,\,e=0,32$).

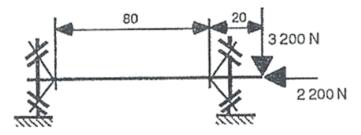
Question 3 Déterminer les charges radiales F_r et axiales F_a auxquelles est soumis le roulement 1. Représenter les actions extérieures à l'arbre sur un schéma simplifié.


Question 4 Déterminer la durée de vie L_{10} de ce roulement dans ces conditions de fonctionnement.

3 Choix de roulements pour une durée de vie souhaitée

Un arbre de transmission est guidé par rapport au carter par deux roulements à une rangée de billes à contact radial. La liaison est représentée par le schéma cinématique simplifié suivant :

Les caractéristiques sont les suivantes :


- arbre de diamètre 28 mm mini;
- fréquence de rotation $N = 100 \,\mathrm{tr/min}$;
- charges constantes;
- le roulement à une rangée de billes à contact radial à choisi doit avoir une durée de vie L_{10} mini de 3000 h.

Question 5 Déterminer les charges radiales F_r et axiales F_a auxquelles est soumis le roulement 1.

Question 6 Déterminer par le calcul la charge dynamique de base C. Le roulement 6406 de l'exercice $1 \ (\emptyset_{int} = 30 \, \text{mm})$ peut-il être choisi? Si oui, vérifier la durée de vie L.

4 Calcul de roulements à rouleaux coniques

Un arbre de transmission est guidé par rapport au carter par deux roulements à rouleaux coniques montés en X. La liaison est représentée par le schéma cinématique simplifié suivant :

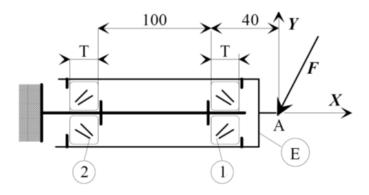
Les caractéristiques sont les suivantes :

- arbre de diamètre 28 mm mini, logement 70 mm maxi;
- fréquence de rotation $N = 100 \,\mathrm{tr/min}$;
- charges constantes de directions fixes par rapport au logement (carter);
- on donne pour les roulements SNR 32006 à rouleaux coniques envisagés de dimensions 30-55-17 les valeurs $C=38\,000\,\mathrm{N}$; e=0,43; X=0,4; Y=1,39.

Question 7 Représenter sur un schéma simplifié la direction et le sens des charges appliquées à l'arbre.

Question 8 Isoler l'arbre et déterminer les charges radiales F_r et axiales F_a auxquelles sont soumis les roulements.

Question 9 Déterminer les charges axiales induites $F_{ai_1}^*$ et $F_{ai_2}^*$ pour les deux roulements à rouleaux coniques.



Question 10 Rechercher le roulement en contact, calculer les charges axiales F_{a_1} et F_{a_2} .

Question 11 Déterminer la durée de vie L_{10} du roulement le plus chargé dans ces conditions.

5 Calcul de roulements à rouleaux coniques et roulements à billes à contacts obliques

Un élément de machine E tournant à 1400 tr/min est guidé par deux roulements à rouleaux coniques $(30 \times 55 \times 17)$ montés en X (e=0,43; X=0,4; Y=1,39). Cet élément de machine E subit en A un effort $\overrightarrow{F}=-2500. \overrightarrow{x}-4200. \overrightarrow{y}$.

Question 12 Déterminer L_{10} pour chacun des roulements.

On remplace les deux roulements précédents par deux roulements à billes à contact oblique (30 × 62 × 16) montés en X. On donne : $\alpha = 25^{\circ}$; $C_0 = 13\,500\,\mathrm{N}$; $C = 20\,500\,\mathrm{N}$.

Question 13 Déterminer L_{10} pour chacun des roulements.

α-			roulements ulements en	0.0000000000000000000000000000000000000			roulements à et duplex e	deux rangée n X et en O	S
		si $\frac{F_s}{F_r}$	$\frac{1}{2} \leqslant e$	si $\frac{F_a}{F_r}$	> e	si $\frac{F_a}{F_r}$	≤ e	$\frac{F_s}{F_r}$	- > e
α degrés	е	Х	Υ	X	Y	Х	Y	X	Y
20	0,57	1	0	0,43	1,00	1,0	1,09	0,70	1,63
25	0,68	1.	0	0,41	0,87	1,0	0,92	0,67	1,41
30	0,80	1	0	0,39	0,76	1,0	0,78	0,63	1,24
35	0,95	1	0	0,37	0,66	1,0	0,66	0,60	1,07
40 *	1,14	1	0	0,35	0,57	1,0	0,55	0,57	0,93
45	1,33	1	0	0,33	0,50	1,0	0,47	0,51	0,81

