
	CPGE PTSI/PT - Sciences Industrielles de l'Ingénieur	PT
	Transmission de puissance	TD
niers	Compétences visées: B2-01 B2-13 C1-04	v0 2

Lycée Jean Zay - 21 rue Jean Zay - 63300 Thiers - Académie de Clermont-Ferrand

RÉDUCTEUR ABRACADABRANTESQUE

1 Présentation du système

Nous disposons d'un réducteur de vitesse de type ABRACADABRANTESQUE $^\circledR$ décrit par le plan d'ensemble ci-dessous.

— Objectif

Déterminer le rapport de réduction de ce mécanisme quelque peu exotique...

© (SO)

2 Données

Le mouvement d'entrée est la rotation de $\mathbf 1$ par rapport au bâti $\mathbf 0$; le mouvement de sortie est la rotation de $\mathbf 5$ par rapport au bâti $\mathbf 0$.

Le rapport de réduction est défini par $k = \frac{\omega_{5/0}}{\omega_{1/0}}$.

Les secteurs dentés ont les caractéristiques suivantes :

- pour le contact en $I: Z_A = 137$ et $Z_B = 100$ respectivement pour $\mathbf{0}$ et $\mathbf{2}$,
- pour le contact en $J: Z_C = 73$ et $Z_D = 40$ respectivement pour 2 et 3,
- pour le contact en $K: Z_E = 101$ et $Z_F = 125$ respectivement pour 3 et 4,
- pour le contact en $L: Z_G = 99$ et $Z_H = 200$ respectivement pour 4 et 5,

3 Travail demandé

Question 1 Tracer le schéma cinématique de ce réducteur peu banal.

Question 2 Peut-on considérer ce réducteur comme un train épicycloïdal? Si oui, identifier ses éléments caractéristiques.

Question 3 Par la méthode de votre choix, déterminer le rapport de réduction k de ce réducteur.

D'après: F.ACHARD